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associated with partially ionized gases in various degrees of thermal nonequilibrium. With v1.0.0, users
can compute thermodynamic and transport properties, multiphase linearly-constrained equilibria,
chemical production rates, energy transfer rates, and gas-surface interactions. The framework is based
on an object-oriented design in C++, allowing users to plug-and-play various models, algorithms, and
data as necessary. Mutation++ is available open-source under the GNU Lesser General Public License
v3.0.
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1. Motivation and significance

The evaluation of thermochemical nonequilibrium, partially
onized gas properties is essential for a wide range of applications,
ncluding hypersonic flows, solar physics and space weather, ion
hrusters, medical plasmas, combustion processes, meteor phe-
omena, and biomass pyrolysis. For example, the prediction of
ypersonic flow plays an important role in the development of
hermal protection systems for atmospheric entry vehicles. Such
lows span a broad range of temporal scales, from local ther-
odynamic equilibrium to thermo-chemical nonequilibrium. As
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such, myriad of physicochemical models, data, and algorithms are
used in today’s hypersonic Computational Fluid Dynamics (CFD)
codes and represent a significant body of work in the scientific
literature. The thermochemical models employed in these codes
directly affect the evaluation of gas properties necessary to close
the conservation laws governing the fluid. These include mixture
thermodynamic and transport properties, species chemical pro-
duction rates, and energy transfer rates. Each of these properties
further depends on the selection of a variety of specialized al-
gorithms and data, such as species partition functions, transport
collision integrals, and reaction rate coefficients.

The implementation, testing, and maintenance of the models,
algorithms, and data required to simulate thermal nonequilib-
rium flows represent a significant cost, in terms of human re-
sources and time necessary to develop a simulation tool. As new
models, algorithms, or data become available, additional effort is
required to update existing codes, especially when models are
‘‘hard-coded’’. A number of commercial and academic software
ttps://doi.org/10.1016/j.softx.2020.100575
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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packages provide gas properties, including CEA [1], EGLIB [2],
pegase [3], CHEMKIN [4], Cantera [5], and KAPPA [6], however,
these libraries tend to focus on a specific application, a narrow
range of collisional time-scales, or are specialized in providing
only certain types of properties.

These observations have led to the desire to reduce the work
necessary to implement new models and algorithms and central-
ize their development into a single software library which may be
used by multiple CFD codes to maximize code reuse, testing, and
open collaboration. This paper presents the Mutation++ library,
which has been developed to meet this objective. Mutation++ is
a complete redesign and extension of its Fortran 77 predeces-
sor, MUTATION [7], and developed with several goals in mind,
including

1. provide accurate thermodynamic, transport, and chemical
kinetic properties for multicomponent, partially ionized
gases,

2. ensure the efficient evaluation of these properties using
state-of-the-art, object-oriented algorithms and data struc-
tures in C++,

3. be easily extendable to incorporate new data or algorithms
as they become available,

4. interface to any simulation tool based on the solution of
conservation laws through a consistent and logical inter-
face,

5. use self-documenting database formats to decrease data
transcription errors and increase readability, and

6. be open source to promote code and data sharing among
different research communities.

The latest version of Mutation++ (v1.0.0) has recently been
released open-source under the Lesser GNU Public License (LGPL
v3) and is freely available on Github.4 In the remainder of the
paper, we present an overview of the library and its impact on the
research community to-date. In particular, the four main modules
of the library – thermodynamics, transport, chemical kinetics, and
gas-surface interaction – are presented, with a few examples to
illustrate the library’s use.

2. Software description

2.1. Generalized conservation equations

While it is beyond the scope of this article to describe in
detail all the various physicochemical models that are present in
the literature, it is useful to briefly present a generalized model
which has been used in the design of the library. For a more
complete discussion, see the work of Scoggins [8]. We consider
a generalized conservation law of the form,

∂tU + ∇xF = S, (1)

where U =
[
ρ̃i ρu ρE ρẽm

]T , is a vector of species mass,
momentum, and total and internal energy densities, F (U , ∇xU )
represents their flux, and S(U ) is a source function. The tilde over
the indexed variables in the density vector denotes that these
quantities must be expanded over their indices. The exact forms
of U , F , and S depend on (1) the coordinate system, (2) the physi-
cal model (i.e.: Euler, Navier–Stokes), and (3) the thermochemical
model of the gas (i.e.: equilibrium, reacting, multi-temperature,
state-to-state).

We define the thermochemical state-vector as Û=
[
ρ̃i ρe ρẽm

]T
where ρe = ρE − ρu · u/2 is the static energy density of the gas.
The flux and source functions are closed by constitutive relations

4 https://github.com/mutationpp/Mutationpp.

Fig. 1. Overview of the Mutation++ library and its coupling to CFD.

for thermodynamic, transport, and chemical properties of the gas.
These include quantities such as pressure, enthalpy, viscosity,
thermal conductivity, diffusion coefficients, chemical production
rates, and energy transfer source terms. In general, these prop-
erties are only functions of the local state-vector Û and possibly
its gradient. This fact allows us to separate the solution of Eq. (1)
into two separate domains with limited coupling controlled by
the CFD solver and Mutation++, as shown in Fig. 1.

2.2. Software architecture

Mutation++ is designed with a strong focus on Object-
Oriented Programming (OOP) patterns in C++. The library’s Ap-
plication Programming Interface (API) is thoroughly documented
using the Doxygen format. A continuous integration strategy has
been employed. Regression and black box testing are performed
through a combination of the Catch2 header-only testing frame-
work and CTest. The primary access to the library is through a
Mixture object, which is implemented as a set of submodules
encapsulating clearly separated physical quantities as depicted
in the simplified Unified Modeling Language (UML) diagram in
Fig. 2.

2.3. Software functionalities

Each module in Fig. 2 is described in the following subsections.
Specific examples of some of the outputs that the library can
provide are given in the Section 3.

2.3.1. Thermodynamics
The thermodynamics module provides pure species and mix-

ture thermodynamic quantities, such as enthalpy, entropy, spe-
cific heats, or Gibbs free energies. Mixture thermodynamic quan-
tities are derived as sums of pure species properties, weighted
by the composition of the mixture. Thermodynamic data for pure
species can be found in several references [9–17]. Differences
exist between each database, such as their format, temperature
range of applicability, or degree of nonequilibrium supported.
Such differences often sway simulation tool designers to select a
single database format to support, or hard-code thermodynamic
data directly into their models. This approach makes it difficult
to update data as needed, or compare with other tools using
different databases.

The Mutation++ framework provides an abstraction layer
which enforces a weak coupling between the concrete thermo-
dynamic database (for any given set of species) and the com-
putation of mixture thermodynamic quantities. Such a design
provides the flexibility to swap out different databases as needed,
with minimal effort. The NASA 7- and 9-coefficient polynomial
databases [18–21] and a custom XML format which implements
a Rigid-Rotor/Harmonic-Oscillator (RRHO) model are currently

https://github.com/mutationpp/Mutationpp
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Fig. 2. Simplified UML class diagram showing major components of the Mutation++ architecture.

Fig. 3. Example input files defining a mixture model.

implemented. The NASA format is widely used and provides
thermodynamic properties for pure species in thermal equilib-
rium. The RRHO model is suitable for thermal nonequilibrium
calculations. In addition, a new database including more than
1200 neutral and ionized species containing C, H, O, and N is
shipped with the library in the NASA 9-coefficient format. The
details of this database have been published in [22]. The user
can specify the concrete thermodynamic model when creating a
mixture (Fig. 3a).

A closely related task to the calculation of thermodynamic
properties is the solution of chemical equilibrium compositions.
The efficient and robust computation of multiphase, constrained
equilibrium compositions is an important topic in several fields,
including combustion, aerospace and (bio)chemical engineering,

metallurgy, paper processes, and the design of thermal protec-
tion systems for atmospheric entry vehicles (e.g., [23–28]). Sev-
eral challenges associated with computing chemical equilibria
make conventional methods hard to converge under some con-
ditions [1,29–32]. A new multiphase equilibrium solver, based
on the single-phase Gibbs function continuation method [33,34],
has been developed specifically for Mutation++. The Multiphase
Gibbs Function Continuation (MPGFC) solver is robust for all well-
posed constraints. More details about the solver can be found
in [35].

2.3.2. Transport
Closure of transport fluxes is achieved through a multiscale

Chapman-Enskog perturbative solution of the Boltzmann equa-
tion, yielding asymptotic expressions for the necessary transport
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Fig. 4. Example classification tree used in Mutation++ for automatically determining chemical reactions. Each node in the tree represents a true/false statement.
ranches to the left mean the statement is false. Right branches indicate true statements. The legend describes which statement each node represents. For example,
he first (top) node represents ‘‘There are no third body species in the reaction.’’ The leaves of the tree are the reaction classifications. Note that each statement’s
alidity is easily determined through knowledge of a reaction’s stoichiometry coefficients.

oefficients, such as thermal conductivity, viscosity, and diffu-
ion coefficients [36–40]. Explicit expressions for these coeffi-
ients are derived in terms of linear transport systems through
Laguerre-Sonine polynomial approximation of the Enskog ex-
ansion at increasing orders of accuracy [41–43]. These linear
ystems are functions of transport collision integrals and the local
tate-vector, and may be solved through a variety of methods.
Collision integrals represent Maxwellian averages of collision

ross-sections for each pair of species considered in a given mix-
ure [36,44], weighted depending on the Laguerre-Sonine polyno-
ial order used [45]. The preferred method to compute collision

ntegrals is to numerically integrate from accurate ab initio poten-
ial energy surfaces. Such data are available for several important
ollision systems [46–48]. When potential energy surfaces are
ot available, collision integrals are integrated from model in-
eraction potentials. The evaluation of these model integrals can
e partitioned in several ways – neutral-neutral, ion-neutral,
lectron-neutral, and charged interactions, heavy, electron-heavy,
nd electron interactions – each with different functional depen-
encies on temperature and degree of ionization. Mutation++

ntroduces a custom XML format for storing collision integral data
Fig. 3b) which

1. is self-documenting,
2. is easily extensible in data and model type,
3. provides customizable default behavior for missing data,

and
4. enforces consistency of standard ratios.

ust-in-time loading and efficient evaluation of this data is han-
led by a CollisionDB object, as shown in Fig. 2.
The solution of the linear transport systems represents a sig-

ificant CPU time for some CFD applications. Several algorithms
ave been proposed in the literature for reducing this cost [42,
9–52]. Mutation++ provides plug-and-play transport algorithms
hrough the use of self-registering algorithm classes. For example,
he abstract class ThermalConductivityAlgorithm, shown in
ig. 2, provides the necessary interface that all thermal conduc-
ivity algorithms must include, namely functions for computing
he thermal conductivity and thermal diffusion ratios. Specific
lgorithms are then implemented by creating a concrete class
hich implements the interface. This pattern has been used for
he calculation of the multicomponent diffusion matrix and shear
iscosity as well.

2.3.3. Kinetics
The goal of the chemical kinetics module is the efficient and

robust computation of species production rates due to finite-rate
chemical reactions. For a reaction set R involving species in S , we
consider production rates of the form

ω̇k

Mk
=

∑
r∈R

∆νkr

[
kfr

∏
j∈S

ρ̃
ν′
jr

j − kbr
∏
j∈S

ρ̃
ν′′
jr

j

]
Θr , (2)

where a full description of each term is given in [8]. The forward
reaction rate is assumed to be a function of a single, reaction-
dependent temperature kfr = kfr (Tfr ) and the backward rate
is determined from equilibrium as kbr (Tbr ) = kfr (Tbr )/Keq,r (Tbr )
where Tbr is a reaction-dependent temperature for the backward
rate.

Apart from the reaction rate temperatures, knowledge of re-
action types is essential in some energy exchange mechanisms.
Manually inputting the type of every reaction in a mechanism of
hundreds or thousands of reactions can be a tedious and error-
prone process. Therefore, Mutation++ provides a unique feature
which determines the type of reaction automatically when a
mechanism is loaded. The problem is formulated as a classifi-
cation tree [53], which can be constructed automatically using
simple characteristics of each reaction. An example of such a
classification tree is provided in Fig. 4.

In principle, the evaluation of Eq. (2) is straight-forward,
though great care is required to do it robustly and efficiently. A
simplified class diagram of the kinetics module is presented in
Fig. 2. The module contains a list of Reaction objects provided
by the user through an XML reaction mechanism file (see Fig. 3c).
The rest of the module is comprised of a set of computational
‘‘managers’’, which are responsible for the efficient evaluation of
individual parts of Eq. (2). These include the evaluation of reaction
rates, operations associated with the reaction stoichiometry (the
sum and products in Eq. (2)), and the evaluation of the third-
body term, Θr . An additional manager class is responsible for
evaluating the Jacobian of species production rates, necessary
for implicit time-stepping CFD algorithms. Finally, the Kinetics
class orchestrates the use of each of these managers to evaluate
Eq. (2) and its Jacobian with respect to species densities and
temperatures.
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Fig. 5. A selection of thermodynamic and transport properties computed with Mutation++ for an isobaric air mixture in equilibrium at 0.01 atm (red), 0.1 atm (blue),
nd 1 atm (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.3.4. Gas-Surface Interactions
The Gas-Surface Interaction (GSI) module provides surface

oundary conditions for Eq. (1). They are obtained by apply-
ng the conservation of mass, momentum, and energy in a thin
ontrol-volume on a surface at steady-state in the form

F g − F b
)
· n = Ss, (3)

where F g and F b are gas and bulk phase fluxes, n is the sur-
face normal, and Ss is the source term associated with surface
processes.

Mutation++ provides several built-in terms that can be mixed
to create a model through a custom XML format, as shown in
Fig. 3d. Once a model is specified, balance equations are cre-
ated dynamically through an object-oriented approach forming
a Surface object (Fig. 2). The resulting nonlinear equations are
functions of the surface thermodynamic state (stored as Û =

ρ̃i ρe ρẽm
]T in SurfaceState), thermochemical properties

f the interface, and the two connecting phases (e.g. Surface-
roperties and SolidProperties). This framework provides
lexibility for the description of a variety of surfaces (e.g. chemi-
ally active, impermeable, porous with fixed outgassing, etc.).
For each type of surface, Mutation++ provides the fluxes and

ource terms expressed in Eq. (3) to the client code. A very

steady-state balances in a robust and efficient way, to obtain the
boundary condition necessary for the CFD or material solvers.
More information about the GSI models available can be found
in [54].

3. Illustrative examples

3.1. Thermodynamic and transport properties

Fig. 5 presents a selection of thermodynamic and transport
properties computed by Mutation++ for an 11-species, isobaric
air mixture in thermochemical equilibrium. The equilibrium mole
fractions and thermodynamic properties are provided using both
the NASA-9 and RRHO thermodynamic databases. Where pos-
sible, comparisons with equilibrium air curve-fits of D’Angola
et al. [55] and thermal conductivity data from Murphy [56] and
Azinovsky et al. [57] are also shown. Both ‘‘frozen’’ and ‘‘equilib-
rium’’ curves are shown for the specific heat at constant pressure
and specific heat ratio. The frozen curves neglect the depen-
dence of the species composition on the temperature through
the equilibrium reactions, while equilibrium curves do not. This
distinction is important, as it shows that these properties can vary
substantially, depending on the thermochemical model employed
by the user. For more information regarding the models, data,
algorithms, and interpretation of these figures, please see the
nique feature of the library is that it, on demand, solves the discussion in [58].
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Fig. 6. Equilibrium char mass blowing rate and wall mole fractions for a
arbon-phenolic ablator in air computed with Mutation++ [22].

3.2. Equilibrium ablation rates

An important problem in the prediction of material response
for thermal protection systems (TPS) of atmospheric entry vehi-
cles is the solution of so-called ‘‘B-prime’’ tables. B-prime tables
describe the equilibrium gas composition at the surface of an
ablating TPS as well as its mass loss rate due to reactions at the
surface, such as oxidation or nitridation. Assuming a thin control
volume over an ablating TPS with equal diffusion coefficients for
each species, conservation of elements inside the control volume
yields

yw =
B′
c yc + B′

g yg + ye
B′
c + B′

g + 1
, (4)

here y is the elemental mass fraction for any element in the
ixture, the subscripts w, c , g , and e refer to wall, char, pyrol-
sis gas, and boundary layer edge properties respectively, B′

≡

˙ /(ρeueCM ) is a mass blowing rate, nondimensionalized by the
oundary layer edge mass flux, and CM is the local Stanton num-
er for mass transfer. When coupled with the minimization of
ibbs energy at a known surface condition, Eq. (4) can be solved
o obtain species composition and char mass blowing rate B′

c .
ig. 6 shows such a calculation performed using Mutation++ with
he custom thermodynamic database discussed in Section 2.3.1.
he B′

c results are compared with those obtained with the ther-
odynamic database from the NASA Chemical Equilibrium with
pplications (CEA) code. More discussion on the differences in
hese databases can be found in [22].

. Impact

The main goal of Mutation++ is to promote open collaboration
etween different research groups and communities working in
he broad areas of hypersonics, combustion, and plasma physics,

data, and algorithms, for modeling gas and gas-surface phenom-
ena. With an efficient and extensible framework, Mutation++ can
be easily coupled with existing CFD tools, allowing researchers
to test effectively new thermodynamic, transport, or chemical
models, physicochemical data, or numerical algorithms. In ad-
dition, users of the library can benefit from the work of oth-
ers through collaborative testing, bug fixing, and maintenance
which is supported by a continuous development and integration
strategy.

Since its creation, Mutation++ has been used in many di-
verse applications, branching out from the original motivation
of hypersonic flows for atmospheric entry [59–62]. These in-
clude the study of biomass pyrolysis [63], solar physics [64],
magnetized transport [43], and meteor phenomena [65–67]. Ap-
plication of the library to fields other than originally intended
serves to highlight the extensibility of the framework and the im-
pact it can have on basic research. The library has also been used
in limited commercial settings. Recently, Mutation++ has been
coupled to the material response codes Amaryllis of LMS Sam-
cef (Siemens) and the Porous material Analysis Toolbox (PATO),
developed jointly between C la Vie and NASA Ames Research
Center, as well as the CFD platforms SU2 from Stanford Univer-
sity and US3D from the University of Minnesota through joint
collaborations.

5. Conclusions

The Mutation++ library provides an OOP framework for com-
puting thermodynamic, transport, and kinetic properties of non
to fully ionized gas mixtures at all points on thermochemical
nonequilibrium spectrum. The library leverages the simple de-
pendence of thermochemical properties on the local thermody-
namic state of the gas to implement a weak coupling between the
computation of those properties and the simulation tools which
need them, through a clean and consistent API.

The code is freely available on GitHub with an LGPL v3.0
license, following a continuous integration development strat-
egy with periodic versioning to alleviate backward compatibility
concerns for its users. This paper marks version v1.0.0 for the
library. Future versions will aim to provide additional features
and greater flexibility for the end-user.
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