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ABSTRACT

Aims. We present a fluid model that has been developed for multicomponent two-temperature magnetized plasmas in chemical non-
equilibrium for the partially to fully ionized collisional regimes. We focus on transport phenomena with the aim of representing the
atmosphere of the Sun.
Methods. This study is based on an asymptotic fluid model for multicomponent plasmas derived from kinetic theory, yielding a
rigorous description of the dissipative effects. The governing equations and consistent transport properties are obtained using a multi-
scale Chapman-Enskog perturbative solution to the Boltzmann equation based on a dimensional analysis. The mass disparity between
free electrons and heavy particles is accounted for, as well as the influence of the electromagnetic field. We couple this model to the
Maxwell equations for the electromagnetic field and derive the generalized Ohm’s law for multicomponent plasmas. The model inher-
its a well-identified mathematical structure leading to an extended range of validity for the Sun’s atmospheric conditions. We compute
consistent transport properties by means of a spectral Galerkin method using the Laguerre-Sonine polynomial approximation. Two
non-vanishing polynomial terms are used when deriving the transport systems for electrons, whereas only one term is retained for
heavy particles.
Results. In a simplified framework where the plasma is fully ionized, we compare the transport properties for the lower solar atmo-
sphere to conventional expressions for magnetized plasmas attributed to Braginskii, showing a good agreement between both results.
For more general partially ionized conditions, representative of the lower solar atmosphere, we compute the muticomponent transport
properties corresponding to the species diffusion velocities, heavy-particle and electron heat fluxes, and viscous stress tensor of the
model for a helium-hydrogen mixture in local thermodynamic equilibrium. The model is assessed for the 3D radiative magnetohy-
drodynamic simulation of a pore at the Sun photosphere. The resistive term is found to dominate mainly the dynamics of the electric
field at the pore location. The battery term for heavy particles appears to be higher at the pore location and at some intergranulation
boundaries.

Key words. plasmas – Sun: chromosphere – Sun: atmosphere

1. Introduction

The lower atmosphere of the Sun is a complex and dynamic layer
where the plasma is found in a wide range of different regimes –
from weakly ionized and non-magnetized at the bottom of the
photosphere to fully ionized and magnetized at the top of the
transition region. In the Sun’s chromosphere, the pressure varies
from a thousand pascals just above the photosphere to a few pas-
cals in the high chromosphere (see Vernazza et al. 1981). Sim-
ilarly, the magnitude of the magnetic field is large in active
regions, around thousands of gauss in sunspots, whereas it is just
a few gauss in quiet-Sun regions, as shown in Wiegelmann et al.
(2014). It is still a great challenge nowadays to develop a uni-
fied model that can be used for both partially and fully ionized
regimes under the large disparity of plasma parameters in the
lower atmosphere.

The study of partially ionized plasmas in the presence of a
magnetic field, such as in prominences and the lower atmosphere
of the Sun, demands models that are beyond the ideal single-fluid
magnetohydrodynamic (MHD) description. Phenomena neces-

sary to fully understand the behavior of plasmas in the Sun
chromosphere, such as Cowling’s resistivity, thermal conduc-
tion, heating due to ion-neutral friction, heat transfer due to col-
lisions, charge exchange collisions, and ionization energy losses,
are usually disregarded in ideal MHD models, or only described
by means of ad-hoc terms.

Two types of fluid models for studying the lower Sun atmo-
sphere are found in the literature. First, the single-fluid MHD
description considers the plasma as a conducting fluid in the pres-
ence of a magnetic field. It has the main drawback of assuming
thermal equilibrium conditions, where all the species are consid-
ered to be at the same temperature. This model is assumed to be
valid at the photosphere, in a highly collisional framework, allow-
ing us to study the formation of magnetic field concentrations
at the solar surface in sunspots, magnetic pores, and the large-
scale flow patterns associated with them (see Hartlep et al. 2012).
It is also used for simulating the lower part of the atmosphere
of the Sun, for example, incorporating subgrid-scale turbulence
models for the transport of heat and electrical resistivity, as pre-
sented by Kitiashvili et al. (2015). The full MHD equations are
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solved in Martinez Sykora et al. (2015) accounting for non-grey
radiative transfer and thermal conduction outside local thermo-
dynamic equilibrium in order to study the effects of the partial
ionization of the Sun chromosphere.

More recently, multi-fluid MHD models have been used
to represent the non-equilibrium conditions of the chromo-
sphere, based on continuity, momentum, and energy conser-
vation equations for each species considered in the mixture
(see Leake et al. 2013; Khomenko et al. 2014; Khomenko 2017;
Alvarez Laguna et al. 2016, 2018; Ni et al. 2018). These mod-
els lead to very stiff systems that are difficult to solve numeri-
cally as they exhibit characteristic times that range from the con-
vective and diffusive times of each fluid down to the collisional
and chemical kinetics time scales, Alvarez Laguna et al. (2016).
Leake et al. (2013) performed a multi-fluid simulation of mag-
netic reconnection for a weakly ionized reacting plasma, with a
particular focus on the solar chromosphere, by considering col-
lisional transport, chemical reactions between species, as well as
radiative losses. Braginskii (1965) has derived rigorous expres-
sions for the transport properties of fully-ionized plasmas starting
from the Boltzmann equation. Khomenko et al. (2014) proposed
a model for the description of a multi-component partially ion-
ized solar plasma. Deriving rigorous transport properties for such
multi-fluid model is complex and, so far, the theory has not yet
been developed to the same level of accuracy as Braginskii’s.

In this paper, we propose a novel approach for studying the
lower atmosphere of the Sun that is neither a single-fluid nor a
multi-fluid MHD model, but a multi-component drift-diffusion
model derived by Graille et al. (2009) from kinetic theory. This
approach is able to capture most of the multi-fluid phenomena,
that is different velocities between species, collisional exchange
of mass, momentum and energy, chemical reactions, thermal
non-equilibrium, and magnetized transport. This system of equa-
tions is less stiff as it solves for only one momentum equa-
tion, like in the single-fluid MHD approach. The electrons are
assumed to move at non relativistic speeds in a collisional fluid
regime. The transport properties are retrieved through a general-
ized Chapman-Enskog solution to the Boltzmann equation using
a multiscale perturbation method. These developments lead to
a model with an extended range of validity from partially to
fully ionized plasmas, with or without the presence of a mag-
netic field. We couple this model to the Maxwell equations for
the electromagnetic field and derive the corresponding general-
ized Ohm’s law for multicomponent plasmas. As in Braginskii’s
theory, our model includes anisotropy in the transport properties
of electrons that is created by the magnetic field. These proper-
ties are computed by solving for the integro-differential systems
presented by Scoggins et al. (2016). We use a spectral Galerkin
method based on the Laguerre-Sonine polynomial approxima-
tion previously studied in depth for various applications (see
Devoto 1969; Ferziger & Kaper 1973; Woods 1995; Zhdanov
2002; Magin & Degrez 2004a; Bruno et al. 2011; Capitelli et al.
2013). The transport systems are implemented in the Muta-
tion++ library that compiles state-of-the-art transport collision
integral data for the different pairs of species in the mixture,
see Scoggins & Magin (2014). In a simplified framework where
the plasma is fully ionized, we compare the transport proper-
ties for the lower atmosphere of the Sun to the conventional
expressions for magnetized plasmas attributed to Braginskii. For
more general partially ionized conditions representative of the
Sun’s lower atmosphere, we compute the muticomponent trans-
port properties corresponding to the species diffusion velocities,
heavy-particle and electron heat fluxes, and viscous stress tensor
for a helium-hydrogen mixture in local thermodynamic equilib-

rium. Finally, the model is assessed for the 3D radiative MHD
simulation of a pore in the highly turbulent upper layer of the
solar convective zone. We compute the thermal conductivity,
electrical conductivity, species diffusion coefficients, and com-
ponents of the generalized Ohm’s law based on an existing fluid
simulation. We draw conclusions about the importance of the
contribution of its components, in particular, of the resistive and
battery terms. The coupling of the model developed for transport
with a flow solver is beyond the scope of this paper.

The structure of the paper is as follows. In Sect. 2, the non-
dimensonal analysis used for the generalized Chapman-Enskog
expansion is presented, together with the multi-component drift-
diffusion model for two-temperature magnetized plasmas, the
transport fluxes, and the generalized Ohm law. In Sect. 3, we
describe the mixture considered, the conditions representative of
the lower Sun atmosphere and the method used for computing
the transport properties. In Sect. 4, we verify the model pro-
posed on a fully-ionized case by comparing the results with those
obtained by means of Braginskii’s theory. Finally, in Sect. 5, we
discuss all the transport properties for a partially ionized case.
Additionally, we compute the transport properties and the com-
ponents of the generalized Ohm law for 3D radiative MHD sim-
ulations of a pore in the low Sun atmosphere.

2. Drift-diffusion model for multicomponent
plasmas

In this section, we present the multi-component drift-diffusion
model for two-temperature magnetized plasmas. It was derived
from kinetic theory by Graille et al. (2009) as a generalized
Chapman-Enskog solution to the Boltzmann equation, using a
multi-scale perturbation method based on a dimensional anal-
ysis. Additionally, we compare this model to the multi-fluid
description widely used for the Sun’s lower atmosphere.

2.1. Multi-scale analysis of the Boltzmann equation

We consider a multicomponent plasma composed of electrons,
denoted here by the index e, and heavy particles (atoms and
molecules, neutral or ionized), denoted by the subscript h. The
species are assumed to be point particles, neglecting their inter-
nal energy. We combine the equations derived by Graille et al.
(2009), Magin et al. (2009) for the fully magnetized case and
the Maxwellian regime for reactive collisions.

In order to apply the Chapman-Enskog method, Graille et al.
(2009) perform a multi-scale analysis on the non-dimensional
Boltzmann equations for electrons and heavy particles. The
order of magnitude of the different terms in the Boltzmann equa-
tion is studied through carefully chosen reference quantities. In
the asymptotic fluid limit, the Knudsen number is assumed to
be as the same order of magnitude as the square root of the
mass ratio between electrons and heavy particles, defined as
ε =

√
me/mh, where me and mh are the mass of electrons and ref-

erence heavy particles respectively. This small parameter drives
thermal nonequilibrium between the electron and heavy-particle
baths. In the strongly magnetized regime, the Hall parameter
is assumed to scale as ε0 = 1. The species distribution func-
tions are expanded in the multiscale perturbation parameter ε
following Enskog’s approach. As opposed to Braginskii, no
assumption is made a priori on the zero-order distribution func-
tion. The asymptotic analysis of the Boltzmann equation is per-
formed at successive orders of ε. The main results occurring at
different time-scales are summarized in Table 1.
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Table 1. Time scales hierarchy and macroscopic equations derived
using the Chapman-Enskog method, Graille et al. (2009).

Order Time Heavy particles Electrons

ε−2 t∗e Thermalization at Te
ε−1 t∗

h
Thermalization at Th

ε0 t∗ Euler 0th-order drift-diffusion
ε t∗/ε Navier-Stokes 1st-order drift-diffusion

In time scales of order t∗e , the electron population thermal-
ize at the temperature Te. The electron distribution function is a
Maxwell-Boltzmann distribution obtained by solving the elec-
tron Boltzmann equation at the order ε−2. At order ε−1 that
corresponds to the time scale t∗

h
, heavy particles thermalize at

temperature Th. At the zeroth order ε0 that corresponds to the
convective time scales, Euler equations for heavy particles and
zero-order drift-diffusion equations for electrons are obtained.
Finally, at order ε, corresponding to the diffusive time scale,
we obtain Navier-Stokes equations for heavy particles and first-
order drift-diffusion equations for electrons. It is important to
mention that in Braginskii’s approach, the macroscopic equa-
tions are retrieved by taking moments of the Boltzmann equation
by considering ad-hoc perturbations to the Maxwell-Boltzmann
distributions. Only a correct scaling deduced from dimensional
analysis can yield a sound multicomponent treatment.

2.2. Multi-component equations

We denote by symbol H the set of indices for the heavy particles
of the mixture considered. First, the mass conservation equations
for electrons and heavy particles are, as follows,

∂tρe + ∂x·
[
ρe(uh + Ve)

]
= ωe, (1)

∂tρi + ∂x·
[
ρi(uh + Vi)

]
= ωi, i ∈ H. (2)

Here, ρe is the mass density of electrons, ρi is the mass den-
sity of heavy particle i ∈ H, uh is the heavy-particle hydrody-
namic velocity that has been chosen as the velocity reference
frame, Ve is the electron diffusion velocity, Vi, i ∈ H is the diffu-
sion velocity of heavy particle i in the reference frame, such that∑

i∈H ρiVi = 0. Quantities ωe and ωi, with i ∈ H, are respectively
the chemical production rates of electrons and heavy particles.

Second, a momentum equation for all the particles within the
plasma is found to be

∂t(ρhuh) + ∂x·
[
ρhuh⊗uh + pI

]
= −∂x·Πh + nqE + I∧B, (3)

where, p = pe + ph is the mixture pressure, which is the sum
of the partial pressure of electrons pe and heavy particles ph, Πh
is the viscous stress tensor. The quantity ρh is the mass density
of heavy particles, n = ne + nh is the mixture number density
(ne the number density of electrons and nh the number density
of heavy particles), nq is the mxiture charge defined by nq =
neqe+

∑
i∈H niqi, where qi is the charge of species i, E the electric

field, and I the total current density defined as

I = nquh + Je + Jh = nquh + neqeVe +
∑
i∈H

niqiVi, (4)

where Jh is the heavy-particle conduction current density, Je is
the electron conduction current density, and B is the magnetic
field. Note that electrons only participate in the momentum bal-
ance through the total pressure gradient and Lorentz force due to
the large mass disparity between electrons and heavy particles.

Conservation of energy for free electrons and heavy particles
is read as

∂t(ρeee) + ∂x·
[
ρeeeuh

]
+ pe∂x·uh + ∂x·qe

= Je·E′ − ∆E0
h − ∆E1

h + Ωe, (5)

∂t(ρheh) + ∂x·
[
ρhehuh

]
+ (phI +Πh):∂xuh + ∂x·qh

= Jh·E′ + ∆E0
h + ∆E1

h + Ωh, (6)

where ρeee and ρheh are the internal energies of electrons and
heavy particles respectively, and qe and qh, the electron and
heavy-particle heat fluxes, respectively. Quantity E′ = E + uh∧B
is the electric field in the heavy-particle reference frame, ∆E0

h

and ∆E1
h

are the energy relaxation terms at order ε0 and ε, respec-
tively. Quantities Jh·E′ and Je·E′ are the power that is developed
by the heavy-particle and electron current densities, and Ωe and
Ωh are the energy production rate for electrons and heavy parti-
cles.

Summing Eqs. (5) and (6), with an equation for kinetic
energy, the total energy equation is obtained as

∂tE + ∂x·
[
(E + p) uh

]
+ ∂x·(Πh·uh) + ∂x·

(
qe + qh

)
= I·E, (7)

where the total energy is E = ρeee + ρheh + 1/2ρhu2h , and I·E the
power developed by the electromagnetic field.

The system of Eqs. (1)–(7) is coupled to the set of Maxwell’s
equations (8) :

∂x·E =
nq

ε0
,

∂x·B = 0,
∂t B = −∂x∧E,
∂x∧B = µ0I + µ0ε0∂t E

(8)

where ε0 is the vacuum permittivity and µ0 the vacuum perme-
ability.

The electron transport fluxes such as the electron diffusion
velocity Ve, the electron heat flux qe, the electron current den-
sity Je are composed of two terms: 1- a term at the convective
time scale, at order ε0, corresponding to the Euler equations
for heavy particles, and 2- a term which is a first order correc-
tion, at order ε, at the dissipative time scale corresponding to
the Navier-Stokes equations for heavy particles. Similarly, the
heavy-particle transport fluxes such as the heavy-particle diffu-
sion velocity Vi, i ∈ H, heat flux qh, viscous stress tensorΠh, and
current density Jh are defined at the dissipative time scale, at the
order ε of the generalized Chapman-Enskog expansion.

The governing Eqs. (1)–(8) differ from the multi-fluid mod-
els used for partially ionized plasmas. Whereas multi-fluid
models consider one hydrodynamic velocity distinct for each
species, here only one common hydrodynamic velocity is used
for the heavy species while each species diffuse in this refer-
ence frame. In addition, the structure of the governing equations
is symmetrizable hyperbolic (Graille et al. 2009), which can be
regarded as an important property for the numerical discretiza-
tion of the system. Nevertheless, it is necessary to close the
model by computing the transport properties. This computation
is presented in Sect. 5 for a helium-hydrogen mixture. Addition-
ally, by using the definition of the total current density I and
the Maxwell equations Eq. (8), a generalized Ohm’s law for this
particular model is derived in Sect. 2.5.

2.3. Transport fluxes for heavy particles

With the same formalism that is used by Graille et al. (2009), we
introduce some extra notations in order to express the anisotropic
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transport properties in the presence of a magnetic field. First, a
unit vector for the magnetic field B = B/|B| is defined as well
as the three direction matrices

M‖ = B⊗B, M⊥ = I −B⊗B, M� =

 0 −B3 B2
B3 0 −B1
−B2 B1 0

 ,
such that we have for any vector x in three dimensions

x‖ = M‖x = x·B B,

x⊥ = M⊥x = x − x·B B,

x� = M�x = B∧x.

In the (x,B) plane, the vector x‖ is the component of x that is
parallel to the magnetic field and x⊥ is the perpendicular compo-
nent. Therefore, we have x = x‖ + x⊥. The vector x� lies in the
direction transverse to the (x,B) plane. The three vectors x‖, x⊥,
and x� are then mutually orthogonal. The anisotropic transport
coefficients are expressed by means of the matrix notation

¯̄µ = µ‖M‖ + µ⊥M⊥ + µ�M�. (9)

In the weakly or unmagnetized plasma regime the parallel and
perpendicular component of the transport coefficients are iden-
tical, leading to µ‖ = µ⊥. In such framework, the transverse
component of the transport coefficient (or in other words, per-
pendicular to the (x,B) plane), is vanishing, leading to µ� = 0.
We recall that the heavy-particle transport fluxes presented in
Sect. (2.2) are:

Πh, Vi, i ∈ H, and qh.

The viscous stress tensor Πh is defined as

Πh = −ηh

([
∂xuh + (∂xuh)>

]
−

2
3

(
∂x·uh

)
I

)
, (10)

where ηh is the viscosity of heavy particles. Then, the heavy-
particle diffusion velocity Vi is given as

Vi = −
∑
j∈H

Di j

(
d j + χh j∂xlnTh

)
, i ∈ H, (11)

where Di j is the multicomponent diffusion coefficient of heavy
particles, d j is the diffusion driving force of the particle j that is
interacting with the heavy particle i, and χh j is the heavy-particle
thermal diffusion ratio of particle j. The diffusion driving force
d j is defined as

d j =
1
ph

(
∂x p j − n jq jE′ − n jF je

)
, j ∈ H, (12)

which is composed of three forces: 1- the force due to the
gradient of the partial pressure ∂x p j, 2- the Lorentz force, and
3- F je that is an average electron force acting on the heavy par-
ticle j. Quantity F je belongs to the category of diffusion driving
forces and allows for a coupling between the heavy particles and
electrons (Graille et al. 2009). This average force is defined as

F je = −
pe
n j

¯̄αe jde −
pe
n j

¯̄χe j∂xlnTe, j ∈ H. (13)

where ¯̄αe j and ¯̄χe j are anisotropic transport coefficients. Finally,
the heavy-particle heat flux reads

qh = −λh∂xTh + ph
∑
j∈H

χh jV j +
∑
j∈H

ρ jh jV j, (14)

where λh is the heavy-particle thermal conductivity and ρ jh j is
the enthalpy of heavy particle j. The second term of Eq. (14)
corresponds to thermal diffusion.

In the previous transport fluxes, some of the usual terms
can be identified. The viscous stress tensor for heavy particles
Eq. (10) is proportional to the strain tensor. Similarly, the first
term of Vi in Eq. (11) is a generalized Fick’s law where the flux
is proportional to the diffusion driving force d j. Also, the first
term of the heavy particle heat flux qh in Eq. (14) is the usual
Fourier law. In addition, Vi includes a term that is proportional to
∂xlnTh, known as the Soret effect, described in Magin & Degrez
(2004b), Giovangigli & Graille (2003, 2009).

In summary, the transport coefficients for heavy particles to
be computed in the following sections are

ηh, Di j, χh j, λh, i, j ∈ H.

In addition, the anisotropic transport coefficients associated to
the coupling terms between electron and heavy particles are
¯̄αe j, ¯̄χe j, j ∈ H.

2.4. Transport fluxes for electrons

The electron transport fluxes are

Ve and qe.
The electron diffusion velocity is defined as

Ve = − ¯̄De
(
de + ¯̄χe∂xlnTe

)
+

∑
i∈H

¯̄αeiVi, (15)

where ¯̄De is the tensor for the diffusion coefficient of electrons,
de is the electron diffusion driving force and ¯̄χe is the electron
thermal diffusion ratio. The electron diffusion velocity Ve is split
into two terms : 1- the terms proportional to de and to ∂xlnTe are
at order ε0, at the heavy particle convective timescale and 2- the
terms proportional to Vi are at order ε at the heavy particle dissi-
pative timescale. The electron diffusion driving force is defined
as

de =
1
pe

(
∂x pe − neqeE′

)
, (16)

which is composed of two forces: 1- the force due to the gradient
of the partial pressure of electron ∂x pe and 2- the Lorentz force.
The electron heat flux reads:

qe = − ¯̄λe∂xTe +
(
pe ¯̄χe + ρehe

)
Ve

+ pe
∑
j∈H

¯̄χe jV j + ρehe
∑
j∈H

¯̄αe jVj, (17)

where ¯̄λe is the electron thermal conductivity tensor and ρehe
is the enthalpy of electrons. Quantity qe is split into two terms:
1- the terms proportional to ∂xTe and Ve are at the heavy-particle
convective timescale, and 2- the terms proportional to Vi that are
at the heavy-particle dissipative timescale.

As in the heavy species transport properties, some usual
terms can be identified that are Fick’s and Fourier’s laws. Addi-
tionally, terms that are coupled to the heavy-particle diffusion
are present at the first order of the generalized Chapman-Enskog
expansion. In summary, the anisotropic transport coefficients
associated to the transport fluxes for electrons are
¯̄De, ¯̄χe, ¯̄λe.

In this section, a list of the transport fluxes and the corresponding
transport coefficients has been presented. The method used for
computing the latter will be presented in the next Sect. 3.
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2.5. Generalized Ohm’s law

In the following, we derive a general expression for Ohm’s law
in the previous set of governing Eqs. (1)–(8). In order to do so,
we rewrite the expression of the electric current by grouping the
terms in each of the driving forces. By doing this, we obtain a
general algebraic expression for the electric field E as a func-
tion of the transport coefficients and the corresponding driving
forces. Note that, in this derivation, the displacement current has
been neglected.

With the electron diffusion velocity from Eq. (16) and the
heavy-particle diffusion velocity from Eq. (11) we find the total
current I as follows

I = nquh +
(neqe)2

pe
¯̄ME′E′ − neqe

[
¯̄Mpe
∂x pe

pe

+
∑
j∈H

¯̄Mp j

∂x p j

ph
+ ¯̄MTe∂xlnTe + ¯̄MTh∂xlnTh

]
(18)

where the multicomponent electromagnetic matrices ¯̄M are
defined as:

¯̄ME′ =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j
¯̄ξe j

 + ¯̄De

 , (19)

¯̄Mpe =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j ¯̄αe j

 + ¯̄De

 , (20)

¯̄Mp j =
∑
i∈H

¯̄ξeiDi j, j ∈ H, (21)

¯̄MTe =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j ¯̄χe j

 + ¯̄De ¯̄χe

 , (22)

¯̄MTh =

∑
i∈H

¯̄ξei

∑
j∈H

Di jχh j


 , (23)

and the tensor ¯̄ξei is defined as

¯̄ξei =
niqi

neqe
I + ¯̄αei, i ∈ H. (24)

After some algebra, using Eq. (18) and neglecting the dis-
placement current, the general expression of the electric field is
obtained as

E′ = ¯̄M−1
E′

[
pe

(neqe)2

(
Je + Jh

)
+

pe
neqe

( ¯̄Mpe
∂x pe

pe
+

∑
j∈H

¯̄Mp j

∂x p j

ph

+ ¯̄MTe∂xlnTe + ¯̄MTh∂xlnTh
)]
. (25)

The expression of the multicomponent electromagnetic matrices
¯̄ME′ ,

¯̄Mpe ,
¯̄MTe ,

¯̄MTh ,
¯̄Mp j can be subdivided into two terms: (1) a

term which depends on the coupled heavy-particle and electron
transport properties, such as ¯̄αe j, ¯̄χe j,Di j, χh j, which scales at the
dissipative timescale for the heavy particles at order ε, and (2)
a term which depends only on the electron transport properties
¯̄De, ¯̄χe, which scales as the convective timescale for the heavy

particles at order ε0.
Some usual terms can be identified in the general expression

of the electric field Eq. (25). The first term of Eq. (25) is the

resistive term, where the expression of the resistivity tensor is
defined as

¯̄ηe =
pe

(neqe)2
¯̄M−1

E′ . (26)

The second term and third term of Eq. (25), can be identified as
a general expression of the battery term for a multicomponent
plasma due to the pressure gradients of electrons and heavy par-
ticles. The fourth and last term of Eq. (25) are additional terms
due to the presence of Soret and Dufour terms in the equations
of the diffusion velocities Eqs. (11) and (16).

In Appendix B, a simplified fully ionized plasma case has
been considered which leads to a simplified expression for the
electric field. In this case, the multicomponent electromagnetic
matrices can be simplified, and the usual expression of the elec-
tric field and magnetic induction equation are retrieved (see in
Appendix B).

3. Methodology

A helium-hydrogen mixture, composed of 92% Hydrogen and
8% of Helium in mole fractions, which is typical of the Sun’s
atmosphere, Asplund et al. (2009), is considered. The set of
species considered in this mixture is denoted as

S 1 = {He, He+, H, H2, He++, H+, e−}. (27)

The heavy species such as carbon, oxygen or metals are not taken
into account. We assume that they do not impact the transport
properties as they are trace elements, i.e., the mole fractions are
very small.

We study the transport coefficients for the previous mixture
within a range of temperature, pressure, and magnetic field that
is largely representative of the lower Sun atmosphere, as shown
by Vernazza et al. (1981), Carlsson & Stein (1995): the temper-
ature varies from 1000 K to 30 000 K, the pressure from 1 Pa to
104 Pa, and the magnetic field from a few Gauss to thousands of
Gauss, as shown by Wiegelmann et al. (2014). In the following,
the plasma beta parameter is defined as βp = 2µ0 p/|B|2, where
p is the total pressure of the plasma in Pascal and |B| is the mag-
netic field in Tesla.

Consequently, for a range of temperature between 1000 K
and 30 000 K, two cases have been considered. The case A,
where the total pressure is p = 104 Pa, and βp = 10. The
case B, where the total pressure is p = 1 Pa, and βp = 0.1.
Finally, the case A is chosen as a thermally pressure dominated
case whereas, the case B is a magnetically pressure plasma case.
In this framework, in the case A, the transport coefficients are
shown to be isotropic and in the case B the latter are shown to be
anisotropic. The latter example may be representative for con-
ditions that we can find 1- in a cool sunspot, where the average
temperature is generally around 4000 K and the magnitude of
the magnetic field is about 1000 G, as shown in Fröhlich & Lean
(2004), Solanki (2003), and 2- in the quiet sun photosphere, in
the lower and upper part of the chromosphere, where the tem-
perature is varying from 5000 K to 10 000 K, and the pressure
from 104 Pa to 0.1 Pa, as shown in Vernazza et al. (1981), Russell
(1929), Asplund et al. (2009) (in orders of magnitude).

Based on the chosen conditions, we compute the thermo-
chemical equilibrium composition. The mole fraction and the
ionization degree of the helium-hydrogen mixture S 1 for the case
A and case B are shown in Figs. 1–3. These results are obtained
with a method that is based on the minimization of the Gibbs
free energy with suitable mass balance constraints, developed
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Fig. 1. Mole fraction of the helium-hydrogen mixture S 1, for P = 104

Pa (case A), as a function of temperature.

Fig. 2. Mole fraction of the helium-hydrogen mixture S 1, for P = 1 Pa
(case A), as a function of temperature.

by Scoggins & Magin (2015) in thermal equilibrium. The com-
positions that are shown in Figs. 1 and 2 will be used to study
the transport properties in the following sections.

Similarly as Scoggins et al. (2016), Magin & Degrez
(2004a), the calculation of the transport coefficients is based
on the solution of integro-differential equations. In order to
solve these equations, a spectral Galerkin method is applied.
This method expands the coefficients in a series of orthogonal
Laguerre-Sonine polynomials that are truncated at a given
order of approximation. The calculation is thus reduced to a
linear algebraic system of equations. As a result, the transport
coefficients can be obtained by the resolution of linear systems
with matrices that are known functions of the macroscopic
parameters that are the field variables and the collision integrals
between particles. The solution of these systems allows for the
transport coefficients to be written as linear combinations of
the collision integrals, which take into account the interaction
potential for a collision between two particles. These linear
combinations are derived by extending the definition and the
calculation of bracket integrals introduced by Ferziger & Kaper
(1973) or in Woods (1995), Zhdanov (2002), Balescu (1988) to
the thermal nonequilibrium case, studied in depth by Kolesnikov
(2003). According to Magin & Degrez (2004a), Kolesnikov
(2003), Tirsky (1993), the transport coefficients involving
collisions between heavy particles and electrons converge for

Fig. 3. Ionization degree the helium-hydrogen mixture of S 1, for case
A (full line) and case B (dashed line) as function of the temperature.

expansions in second order non vanishing Laguerre-Sonine
polynomials and higher. In this work, we use the third order
Laguerre Sonine polynomials approximation in order to com-
pute the transport properties. This method has been widely used
in the literature, for example Bruno et al. (2011), Woods (1995),
Magin & Degrez (2004b), Zhdanov (2002), Balescu (1988),
Capitelli et al. (2013).

The explicit relations for ¯̄αe j, ¯̄χe j, and ¯̄De, ¯̄χe, ¯̄λe in terms of the
solutions to the transport systems can be found in Scoggins et al.
(2016) and in Appendix C. The heavy particle transport sys-
tems for ηh,Di j, χh j, λh, are found in Magin & Degrez (2004b)
with the difference that the mole fractions are given in terms of
heavy species only, excluding electrons. These are also presented
in Appendix C. The transport collision integrals for the helium-
hydrogen mixture are taken from Bruno et al. (2010).

4. Verification of the method in a fully ionized
plasma case S2

In order to verify the presented method, we perform a com-
parison with Braginskii’s transport properties. In the method of
Braginskii (1965), the computation of the transport properties
as well as the derivation of the governing equations are valid
only for fully ionized plasmas. As it can be seen in Fig. 3,
the helium-hydrogen mixture S 1 can be considered to be fully-
ionized, mainly composed of S 2 = {H+, e−}, when the temper-
ature is higher than 15 000 K. The comparison will be thus per-
formed in conditions where the mixture is S 2 in a range of tem-
peratures from T = 15 000 K to T = 30 000 K for the case A
and case B. To illustrate the comparison, we focus on the prop-
erties λ‖e, λ⊥e , ηh and λh, although the rest of them show similar
behaviour.

On the one hand, in Braginskii (1965), the derivation of the
governing equations can be summarized in three main steps:
1- A fully ionized ion-electron plasma is considered in a con-
stant magnetic field, 2- The Landau collision operators are used,
simplified by the Lorentz process, and 3- an ad-hoc Chapman-
Enskog method is used based on the square root of the mass ratio
between electron and ions, Balescu (1988). On the other hand,
in Graille et al. (2009), a general multicomponent plasma that
can be partially or fully ionized is considered in a constant mag-
netic field, the Chapman and Cowling collision operators highly
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studied in Ferziger & Kaper (1973), Woods (1995) are used and
the Chapman-Enskog expansion is performed after a dimen-
sional analysis of the Boltzmann equation. Finally, the two meth-
ods lead to distinct governing equations.

Although the governing equations between the two models
are different, the integro-differential systems for computing the
transport properties are similar or even identical in the case of
a fully ionized plasma. In both models, the anisotropic electron
transport properties have the same integro-differential systems.
However, only the systems related to the parallel component of
the heavy particle transport properties are identical to those from
the model derived by Graille et al. (2009). Consequently, only
the parallel component of the heavy particle transport proper-
ties can be compared with those from the model of Graille et al.
(2009). This is due to the fact that both models are based on
the Chapman-Enskog expansion. However, the differences result
from the scale analysis from the Boltzmann equation that is car-
ried out by Graille et al. (2009) before applying the expansion.

In both models, the transport coefficients are expanded in
a series of orthogonal Laguerre-Sonine polynomials. The latter
are written as linear combinations of collision integrals that are
simplified by potential interactions, based on the usual Coulomb
interaction screened by the Debye-length. This approximation
assumes collisions with large impact parameters and small scat-
tering angles. However, in Braginskii (1965), the series are trun-
cated at the second-order approximation whereas a third-order
approximation has been performed in the case of the model pre-
sented. The expression of the transport coefficients depends on
the mean collision times τ̄e and τ̄h defined as

τ̄e =
3me2ε0

2

nhqe
4 log(Λ)

(
2πkBTe
qe

2ne

) 3
2

, τ̄h =

√
2mh
me

(
Th
Te

) 3
2

Z−2τ̄e,

(28)

where log(Λ) is the Coulomb logarithm defined by Spitzer
(1963), kB, Boltzmann’s constant, and Z, the charge number.
The mean collision times as defined in Eq. (28), can be seen
as a first-order Chapman Cowling approximation of the colli-
sion time for electron-ion, and, ion-ion collisions, as shown by
Woods (1995). Correction terms depending on Z are used for the
computation of the transport coefficients. This method leads to
simplified expressions of the transport coefficients that depend
only on the mean collision times and the charge number of the
fully ionized plasma considered, as presented by Balescu (1988),
Woods (1995).

In Braginskii (1965) (see Eq. (4.37)), the parallel and perpen-
dicular components of the electron thermal conductivity tensor
are defined as

λ‖e :=
Br

nek2
BTe

me
τ̄e [3.16] , (29)

λ⊥e :=
Br

nek2
BTe

me
τ̄e

[
4.664x2 + 11.92

x4 + 14.79x2 + 3.77

]
, (30)

where Br denotes the computation of the transport coefficient as
derived by Braginskii (1965). x = ωeτ̄e and ωe = qeB/me and
the values in brackets correspond to Braginskii’s coefficients for
a charge number Z = 1.

Figures 4 and 5 show the parallel and perpendicular com-
ponent of the electron thermal conductivity tensor ¯̄λe, as func-
tion of the temperature, for the case A and the case B, for
the fully ionized plasma S 2. Here, we compare the expres-
sions from Braginskii Eq. (29) and Eq. (30) with those that

Fig. 4. Parallel component of the electron thermal conductivity tensor λ‖e
for a fully ionized plasma S 2, as function of temperature. Dashed lines
and full lines correspond to the transport coefficient from the model
of Braginskii (1965), and from Graille et al. (2009) respectively. Bold
lines correspond to the case A, the other lines correspond to the case B.

Fig. 5. Perpendicular component of the electron thermal conductivity
tensor λ⊥e for a fully ionized plasma S 2, as function of temperature.
Dashed lines and full lines correspond to the transport coefficient from
the model of Braginskii (1965), and from Graille et al. (2009) respec-
tively. Bold lines correspond to the case A, the other lines correspond
to the case B.

are given by Scoggins et al. (2016) that are based on a third-
order Laguerre-Sonine polynomials approximation. Strong sim-
ilarities are obtained in all the considered cases. In Braginskii
(1965), the components of the electron thermal conductivity ten-
sor are underestimated leading to differences that are less than
20%. These differences are increasing at high temperatures. Sim-
ilar results have been obtained for all the other electron transport
properties.

Similarly, the parallel component of the heavy thermal con-
ductivity and of the heavy particle viscosity of the model of
Braginskii (1965, see Eq. (4.44)), have been compared with
the expression from Scoggins et al. (2016) and Magin & Degrez
(2004a). In Braginskii (1965), the heavy thermal conductivity
and heavy viscosity are defined as

λ‖
h

:=
Br
nhk2

BThτ̄h [3.91] , (31)

η‖
h

:=
Br
nhkBThτ̄h [0.96] . (32)
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Figure 6 and 7 show the heavy thermal conductivity λh and
heavy viscosity ηh respectively, in the same conditions as in
Figs. 4 and 5. As before, strong similarities have been obtained in
all the considered cases for the chosen conditions, which leads
to differences that are smaller than 20%. In addition, it can be
shown that the heavy transport properties from Braginskii (1965)
are isotropic at the chosen conditions.

In summary, we can conclude that the proposed method is
verified for the fully ionized case. The main differences that
are obtained between the two models are due to 1-the order
of Laguerre Sonine polynomials that was used that is second
order in Braginskii’s model, Balescu (1988), and third order in
the proposed method, and 2- the nature of the collision opera-
tors used, Landau collision operators in the model of Braginskii,
as opposed to Chapman and Cowling collision operators in the
model of Graille et al. (2009). Additionally, the formulation of
the transport properties that are considered in this paper are gen-
eralized for any type of partially ionized mixture.

5. Transport properties for a partially ionized
helium-hydrogen plasma

5.1. Transport fluxes in thermo-chemical equilibrium

In order to simplify the analysis of the presented transport sys-
tems, we consider thermochemical equilibrium Te = Th = T ,
isobaric mixtures at rest. The total heat flux is entirely a func-
tion of the temperature gradient and magnetic field and may be
written as

qh + qe = −
(
λh + ¯̄λe + ¯̄λS + ¯̄λR

)
∂xT, (33)

where the Soret and reactive thermal conductivities may be writ-
ten as

¯̄λS = −pe ¯̄χeθe −
∑
j∈H

[
phχh j + pe ¯̄χe

]
θi, (34)

¯̄λR = −ρeheθe −
∑
j∈H

[
ρ jh j + ρehe ¯̄αe j

]
θ j, (35)

where θe and θi, i ∈ H are defined as

θe = − ¯̄De

[
1
xe

∂xe
∂T

+
¯̄χe
T

]
, (36)

θi =
∑
j∈H

Di j

[
1

1 − xe

(
∂xi

∂T
+
∂xe
∂T

¯̄αe j

)
+
χh j

T
+

pe
ph

¯̄χe j
T

]
, i ∈ H.

(37)

Here, θe and θi correspond to diffusion velocities for a tempera-
ture gradient of 1, that are Ve = θe∂xT and Vi = θi∂xT . We com-
pute all the transport properties for the helium-hydrogen mixture
S 1 for case A and case B.

Figures 8 and 9 present the parallel, perpendicular and trans-
verse components of the electron thermal conductivity tensor ¯̄λe
as a function of the temperature, for both cases. According to
Fig. 8 (case A), the perpendicular component is equal to the
parallel component for the entire range of temperatures, thus,
the electron thermal conductivity is isotropic. Indeed, the pres-
sure forces are dominating the magnetic pressure forces, so the
plasma is unmagnetized. On the other hand, in Fig. 9 (case B),

Fig. 6. Heavy thermal conductivity λh for a fully ionized plasma S 2,
as function of temperature. Dashed lines and full lines correspond to
the transport coefficient from the model of Braginskii (1965), and from
Graille et al. (2009) respectively. Bold lines correspond to the case A,
the other lines correspond to the case B.

Fig. 7. Heavy particle viscosity ηh for a fully ionized plasma S 2, as
function of temperature. Dashed lines and full lines correspond to the
transport coefficient from the model of Braginskii (1965), and from
Graille et al. (2009) respectively. Bold lines correspond to the case A,
the other lines correspond to the case B.

for temperatures higher than T = 5000 K, the electron thermal
conductivity ¯̄λe is anisotropic since the magnitude of magnetic
field is higher. This results in a transverse component that is
higher than the perpendicular component of ¯̄λe. Similar results
have been obtained for the other anisotropic electron transport
properties such as ¯̄De and ¯̄χe.

Figure 10 shows the heavy-particle thermal conductivity λh,
as a function of the temperature, for the case A and case B. In
Fig. 10, strong differences between the two cases for a tempera-
ture higher than 6000 K can be seen. In the case A, λh increases
from 1000 K to 9000 K, which is expected since λh is an increas-
ing function of the temperature. However, in the case A after
9000 K, λh decreases. This decrease is due to the ionization
of hydrogen. Indeed, the heavy particle thermal conductivity is
related to a combination of the cross sections variations of all the
heavy species in the mixture, which are proportional to the mole
fractions of each heavy particles. This result is coherent with

A87, page 8 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834686&pdf_id=6
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834686&pdf_id=7


Q. Wargnier et al.: Consistent transport properties in multicomponent two-temperature magnetized plasmas

Fig. 8. Components of the electron thermal conductivity tensor ¯̄λe for
the isotropic case A, at the third-order Laguerre Sonine polynomials,
for the helium-hydrogen mixture S 1 as a function of temperature.

Fig. 9. Components of the electron thermal conductivity tensor ¯̄λe for
the anisotropic case B, at the third-order Laguerre Sonine polynomials,
for the helium-hydrogen mixture S 1 as a function of the temperature.

Fig. 1, which shows that the mole fraction of H is decreasing
after 9000 K. Similar behavior as the case A have been observed
for the case B, except that the ionization of H starts at 6000 K
for this pressure. In Fig. 10, the second modulation observed
around 12 000 K is due to the ionization of Helium as shown in
Fig. 2.

Figure 11 shows the components of the total heat flux
(Eq. (33)) as a function of the temperature, for the isotropic
case A. It is clear that the reactive thermal conductivity λ‖R is
higher than the other components for certain ranges of temper-
ature between 2200 K and 4300 K, where hydrogen dissociation
occurs, and for temperature higher than 10 000 K, where hydro-
gen ionization takes place. The heavy thermal conductivity λh
is the second term which dominates the total heat flux, and is
higher than λ‖R for a range of temperature between 4200 K and
10 000 K. The results here obtained are consistent with those of
Scoggins et al. (2016).

Figure 12 and 13 show the parallel component of each term
of the electron heavy-particle transport coefficients α‖

e j, as a
function of the temperature, for the case A and case B. As before,
each term of the electron heavy-particle transport tensor α‖

e j, is
proportional to the mole fraction.

Fig. 10. Heavy thermal conductivity λh, at the second-order of Laguerre
Sonine approximation, for case A and case B, for the helium-hydrogen
mixture S 1 as a function of temperature.

Fig. 11. Component of the total heat flux (33) as a function of
the temperature for the isotropic case A for the helium-hydrogen
mixture S 1.

5.2. Transport properties in a pore at the photosphere of the
Sun

As done in the previous section, the transport coefficients of the
previous helium-hydrogen mixture are computed for the condi-
tions found in the upper layer of the solar convective zone from
the radiative 3D MHD simulations of a pore by Kitiashvili et al.
(2010). The simulation results are obtained for the compu-
tational domain of 6.4 × 6.4 × 5.5 Mm3 with the grid sizes:
50 × 50 × 43 km3, 25 × 25 × 21.7 km3 and 12.5 × 12.5 × 11 km3

(1282×127, 2562×253 and 5122×505 mesh points). The domain
includes an upper 5 Mm-deep layer of the convective zone and
the solar chromosphere. In this section, the results and quanti-
ties are obtained from simulations of Kitiashvili et al. (2010),
Wray et al. (2015, 2018) via a single-fluid model. This is a post-
processed calculation for quantities that belong to the multi-
component model presented. Since the electron heavy-particle
collision frequency is high in the conditions chosen, a thermal
equilibrium case Te = Th has been considered for the com-
putation of the transport coefficients. For the sake of clarity,
only results from a slice at a constant geometrical height z =
−0.5 Mm, in the lower photosphere has been presented.
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Fig. 12. Parallel component of the electron/heavy-particle transport
coefficient α‖

e j, j ∈ {He,He+,H,H2,He++,H+}, for the isotropic case A,
for the helium-hydrogen mixture S 1.

Fig. 13. Parallel component of the electron/heavy-particle transport
coefficient α‖

e j, j ∈ {He,He+,H,H2,He++,H+}, for the anisotropic case
B, for the helium-hydrogen mixture S 1.

Figures 14–16 show snapshots of the distribution of the
plasma beta parameter βp, temperature T , and total mass density,
respectively. As it can be seen, the temperature is varying from
4000 K to 6500 K, the plasma beta parameter is varying on a
large range of magnitude, from weakly- to strongly-magnetized.
In the snapshot of the simulation, a characteristic granulation
pattern with the relatively hot (T > 5500 K) and less dense
upflowing weakly-magnetized plasma in the middle of the gran-
ular cells can be observed. In addition, the lower temperature
(T < 4500 K) and higher density downflowing strongly magne-
tized plasma at the intergranulation boundaries can be perceived
(red lines of granulation). A strongly magnetized cold plasma
can be seen in the middle of the snapshot.

Figures 17–20 present the distribution of the heavy-particle
heat flux λh|∂xT | and the ratios λ‖e/λ⊥e , λ‖R/λh, and λ‖e/λh, respec-
tively. Figure 18 shows that the electron thermal conductivity
tensor ¯̄λe is almost isotropic everywhere, except in the mid-
dle of the snapshot where λ‖e/λ⊥e = 1.08. In Fig. 19, the peak
of reactive thermal conductivity is attributed to the dissociation
reaction of hydrogen. Figure 20 shows that the electron thermal
conductivity is small compared to the heavy thermal conductiv-
ity. These results are related to the results from Figs. 1 and 2 that

Fig. 14. Plasma beta coefficient βp distribution from the radiative 3D
MHD simulations of a pore by Kitiashvili et al. (2010).

Fig. 15. Temperature (K) distribution from the radiative 3D MHD sim-
ulations of a pore by Kitiashvili et al. (2010).

show that the mole fraction of electrons is very small compared
to the mole fraction of heavy particles in that range of tempera-
ture between 4000 K to 6500 K.

5.3. Components of the generalized Ohm’s law in a pore at
the Sun photosphere

As in Sect. 5.2, we compute the components of the general-
ized Ohm’s law from Eq. (25) using a helium-hydrogen mixture,
from the simulation by Kitiashvili et al. (2010). According to the
result found in Fig. 18, we assume an isotropic distribution of the
transport properties. Figures 21–25 show the distribution of the
resistive term, the electron battery term, the heavy-particle bat-
tery term and the Soret terms for electron and heavy particles
respectively.

In the results obtained, the resistive term appears to be the
higher term in the generalized Ohm’s law in both inside (mag-
nitude 102) and outside the pore (magnitude 1−10, not shown
in Fig. 21). However, outside the pore, the battery term for
heavy particles appears to be the second higher term. All the
other terms are negligible inside and outside the pore (magni-
tude 10−7). In addition, the Soret and battery terms for electrons
are negligible compared to the other terms of the generalized
Ohm’s law. Indeed, this is due to the mole fraction of electrons
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Fig. 16. Total mass density (kg m−3) distribution from the radiative 3D
MHD simulations of a pore by Kitiashvili et al. (2010).

Fig. 17. Distribution of the heavy particle heat flux λh|∂xT |, for the
helium-hydrogen mixture S 1 based on the results of the radiative 3D
MHD simulations of a pore by Kitiashvili et al. (2010).

which is very small compared to heavy particles under these con-
ditions. These results are coherent with the mole fraction distri-
bution presented in Figs. 1–3.

6. Conclusion

The present model, derived from the kinetic theory of
Graille et al. (2009), is neither a single-fluid MHD nor a multi-
fluid model. It is an intermediary model between the two that is a
drift-diffusion multi-component model. Although the multi-fluid
model and the multicomponent model are catching the same
physics, their main difference is the scaling that has been used in
the generalized Chapman-Enskog expansion. Their scaling leads
to a thermal non-equilibrium multicomponent model with one
momentum equation, where the electrons and each heavy parti-
cle diffuse in the hydrodynamic heavy-particle reference frame.
These developments lead to an extended range of validity for
partially and fully ionized plasma,as well as weakly, strongly
and non-magnetized plasmas, and for a general multicomponent
mixtures, which can be applied to conditions of the Sun’s atmo-
phere. From the numerical point of view, the multicomponent
model is prone to less stiffness compared to the conventional
multi-fluid models, where source terms and coupling terms are

Fig. 18. Ratio λ‖e/λ
⊥
e distribution, computed at the third order of the

Laguerre-Sonine polynomials approximation, for the helium-hydrogen
mixture S 1 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al. (2010).

Fig. 19. Ratio λ‖R/λh distribution, computed at the third order of the
Laguerre-Sonine polynomials approximation, for the helium-hydrogen
mixture S 1 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al. (2010).

considered in the momentum equations and energy equations of
each particle. On the other hand, the single-fluid MHD model is
shown to be a thermal equilibrium model with no relaxation term
and decoupling between the particles. However, in this frame-
work, this model shows less numerical stiffness in absence of
source or relaxation terms. Fluid-models are valid only in cases
where the plasma is in collisional regimes leading to small values
of the Knudsen number. Thus, only perturbations of Maxwellian
distribution functions are considered here.

From the set of governing equations, a generalized Ohm’s
law has been derived. A general expression of the resistive term,
as well as the battery term, has been obtained for a general
multicomponent plasma. This general expression of the elec-
tric field can be simplified in a fully ionized plasma case (See
Appendix B).

General conditions largely representative of the lower solar
atmosphere have been chosen in order to compute all the trans-
port properties for a helium-hydrogen mixture S 1. The latter
are obtained by solving transport systems which are presented in
Appendix C. A spectral Galerkin method based on a third-order
Laguerre-Sonine polynomials approximation has been used.
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Fig. 20. Ratio λ‖e/λh distribution, computed at the third order of the
Laguerre-Sonine polynomials approximation, for the helium-hydrogen
mixture S 2 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al. (2010).

Fig. 21. Distribution of the resistive term (first term of Eq. (25)), com-
puted at the third order of the Laguerre-Sonine polynomials approxi-
mation, for the helium-hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al. (2010).

For convenience, we have implemented the transport model
described in the paper in Mutation++, an open-source library1.
In order to validate our model, a comparison with the model
of Braginskii (1965) has been performed in the case of a fully
ionized plasma S 2. Both models are derived from the kinetic
theory based on a Chapman-Enskog method. Differences are
observed in 1-the structure of the governing equations and 2- the
nature of the collision operators. While the heavy transport prop-
erties are anisotropic in Braginskii (1965), in our model, they
remain isotropic. Nevertheless, under the chosen range of con-
ditions, both behave as isotropic. In Braginskii (1965), the cor-
responding series of Laguerre-Sonine polynomials are truncated
at the second order, whereas a third-order accuracy is reached in
our model. Good agreement has been obtained for the considered
fully ionized S 2 mixture in the chosen conditions.

Finally, using the Mutation++ library, the method allows us
to compute all the transport properties for a partially ionized
plasma for a given mixture. The obtained results strongly depend

1 The presented transport systems have been implemented into MUTA-
TION++ Library. The GitHub link repository is https://github.
com/mutationpp/Mutationpp

Fig. 22. Distribution of the electron battery term (second term of
Eq. (25)), computed at the third order of the Laguerre-Sonine poly-
nomials approximation, for the helium-hydrogen mixture S 1, based
on the results of the radiative 3D MHD simulations of a pore by
Kitiashvili et al. (2010).

Fig. 23. Distribution of the heavy battery term (third term of Eq. (25)),
computed at the third order of the Laguerre-Sonine polynomials approx-
imation, for the helium-hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al. (2010).

on the mole fraction between the species of the mixture. We have
been able to identify the behavior of the transport coefficients
related to the chemistry of the species in the partially ionized
mixture S 1. Considering the complexity of the multicomponent
model and the new terms that appear, postprocessing calcula-
tions were performed based on the results of a pore simulation
for a partially ionized plasma of a mixture of Hydrogen and
Helium S 1 in thermochemical equilibrium in the highly turbu-
lent upper layer of the solar convective zone by Kitiashvili et al.
(2010). These results allow us to both understand the effect
and magnitude of these terms under the conditions we chose,
especially the terms of the generalized Ohm’s law. Generally,
the plasma being weakly ionized under these conditions, all
the transport fluxes related to the electrons are negligible com-
pared to those from heavy particles. In particular, we show a
new formulation of the resistivity which depends on the multi-
component transport coefficients taking into account all possible
interactions in the mixture. It appears to be much more general
than standard resistivity such as ambipolar resistivity or Spitzer
resistivity. Under conditions where the plasma is dominated by
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Fig. 24. Distribution of the Soret/Dufour term (fourth term of Eq. (25)),
computed at the third order of the Laguerre-Sonine polynomials approx-
imation, for the helium-hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al. (2010).

Fig. 25. Distribution of the Soret/Dufour term (last term of Eq. (25)),
computed at the third order of the Laguerre-Sonine polynomials approx-
imation, for the helium-hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al. (2010).

electromagnetic forces, which is the case in the center of the
pore in Sect. 5, we find qualitatively that this term dominates
the dynamics of the weakly ionized helium-hydrogen plasma.
On the other hand, at the interboundary granulations (or more
generally in the case of quiet sun photosphere conditions) when
the plasma is weakly ionized and thermal pressure dominated,
the new terms such as the Soret/Dufour effects (related to the
temperature or pressure gradients) are dominating the plasma
dynamics. In such conditions, these new terms allow magnetic
reconnection process to occur. Indeed, according to Eq. (25), the
parallel component of these terms may produce an electric field
parallel to the magnetic field which may result in reconnection.
These terms do not appear in the classical multi-fluid or single-
fluid model (see Leake et al. 2013) since only a resistive term
is generally considered, which allows magnetic reconnection to
occur only in the magnetic pressure dominated plasma regime.
Preliminary results have been obtained by Wargnier et al. (2018)
for a fully ionized plasma in thermal nonequilibrium in the
framework of a magnetic reconnection event.
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Appendix A: Non-dimensional Boltzmann
equations

In Graille et al. (2009), the non-dimensional Boltzmann equa-
tions for electron and heavy particles is

∂t f e +
1
εMh

(
Ce + +εMhuh

)
·∂x f e

+ ε−(1−b)
qe

(
Ce + εMhuh

)
⊗ B·∂Ce f e

+

(
1
εMh
qeE − εMh

Duh
Dt

)
·∂Ce f e

− (∂Ce f e ⊗ Ce):∂xuh =
1
ε2Je, (A.1)

and for each heavy species,

∂t f i +
1

Mh

(
Ci + Mhuh

)
·∂x f i

+ ε−(1+b)
qi

(
Ci + εMhuh

)
⊗ B·∂Ci f i

+ (
1
εMh

qi

mi
E − Mh

Duh
Dt

).∂Ci f i

−
(
∂Ci f i ⊗ Ci

)
:∂xuh =

1
ε
Ji, i ∈ H. (A.2)

Where the collision operators are defined as

Je = Jee( f e, f e) +
∑
j∈h

Je j( f e, f j), (A.3)

Ji =
1
ε
Jie( f i, f e) +

∑
j∈h

Ji j( f i, f j), i ∈ H. (A.4)

Where Ci, i ∈ H and Ce are the peculiar velocities for heavy
species and electron respectively.

Appendix B: Ohm’s law for a fully ionized plasma S1

In a fully ionized plasma, the definition of the current density is
I = nquh + Je (B.1)
where the electron current density is defined by Eq. (4). It should
be noted that in the particular case of a fully ionized plasma, no
diffusion velocities of heavy species are considered, because the
presented model is in the reference frame of heavy particles.

Then, similarly as the general case, the total current density
can be expressed in function of fluxes, as follows,

I = nquh +
(neqe)2

pe
¯̄DeE′ − neqe

[
¯̄De
∂x pe

pe
+ ¯̄De ¯̄χe∂xlnTe

]
(B.2)

It should be noted that the multicomponent electromagnetic
matrices in a fully ionized plasma are
¯̄ME′ = ¯̄De, (B.3)
¯̄Mpe = ¯̄De, (B.4)
¯̄Mp j = 0, j ∈ H (B.5)
¯̄MTe = ¯̄De ¯̄χe (B.6)
¯̄MTh = 0. (B.7)

Using the Maxwell-Ampere’s law ∂x∧B = µ0I in a non-
relativistic context, the expression of the electric field as a func-
tion of fluxes can be obtained

E = −uh∧B + ¯̄ηe Je +
∂x pe
neqe

+
pe
neqe

¯̄χe∂xlnTe (B.8)

where the electron resistivity tensor is ¯̄ηe = ¯̄D−1
e pe/(neqe)2.

Appendix C: Transport systems

C.1. Anisotropic transport systems

Anisotropic transport coefficients are computed in terms of solu-
tions to complex linear systems. For µ ∈ {De, (Di)i∈H}, transport
systems read for Sonine polynomial order ξ ≥ 1∑
q∈Pξ

Lpq
ee α

qµ(1)
e (ξ) = β

pµ
e , p ∈ Pξ, (C.1)∑

q∈Pξ

(Lpq
ee + iLBpq

ee )αqµ(2)
e (ξ) = β

pµ
e , p ∈ Pξ, (C.2)

where Pξ = {0, . . . , ξ − 1}. Likewise, for λe, we have∑
q∈Pξ1

Lpq
ee α

qλe(1)
e (ξ) = β

pλe
e , p ∈ Pξ1, (C.3)∑

q∈Pξ1

(Lpq
ee + iLBpq

ee )αqλe(2)
e (ξ) = β

pλe
e , p ∈ Pξ1, (C.4)

where Pξ1 = {1, . . . , ξ − 1} for ξ ≥ 2, the matrices Lpq
ee and LBpq

ee

are given up to third order as

Lpq
ee =

16
3

p
kBTe

√
me

2πkBTe
L̃pq
ee , (C.5)

L̃00
ee =

∑
j∈H

x jQ̄
(1,1)
e j , (C.6)

L̃01
ee = L̃10

ee =
∑
j∈H

x j

(5
2

Q̄(1,1)
e j − 3Q̄(1,2)

e j

)
, (C.7)

L̃02
ee = L̃20

ee =
∑
j∈H

x j

(35
8

Q̄(1,1)
e j −

21
2

Q̄(1,2)
e j + 6Q̄(1,3)

e j

)
, (C.8)

L̃11
ee =

∑
j∈H

x j

(25
4

Q̄(1,1)
e j − 15Q̄(1,2)

e j + 12Q̄(1,3)
e j

)
+ xe
√

2Q̄(2,2)
ee ,

(C.9)

L̃12
ee = L̃21

ee =
∑
j∈H

x j

(175
16

Q̄(1,1)
e j −

315
8

Q̄(1,2)
e j + 57Q̄(1,3)

e j − 30Q̄(1,4)
e j

)
+ xe
√

2
(7
4

Q̄(2,2)
ee − 2Q̄(2,3)

ee

)
, (C.10)

L̃22
ee =

∑
j∈H

x j

(1225
64

Q̄(1,1)
e j −

735
8

Q̄(1,2)
e j +

399
2

Q̄(1,3)
e j

− 210Q̄(1,4)
e j + 90Q̄(1,5)

e j

)
+ xe
√

2
(77

16
Q̄(2,2)
ee − 7Q̄(2,3)

ee + 5Q̄(2,4)
ee

)
,

(C.11)

LBpq
ee = 0, p , q, (C.12)

LB00
ee =

qe
kBTe

B, (C.13)

LB11
ee =

5
2

qe
kBTe

B, (C.14)

LB22
ee =

35
8

qe
kBTe

B, (C.15)

and the right-hand sides are given as

β
pDe
e = δp0, (C.16)

β
pλe
e =

5
2
δp1, (C.17)
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β0Di
e =

8
3
ni

√
2me
πkBTe

Q̄(1,1)
ei , (C.18)

β1Di
e =

8
3
ni

√
2me
πkBTe

(5
2

Q̄(1,1)
ei − 3Q̄(1,2)

ei

)
, (C.19)

β2Di
e =

8
3
ni

√
2me
πkBTe

(35
8

Q̄(1,1)
ei −

21
2

Q̄(1,2)
ei + 6Q̄(1,3)

ei

)
, (C.20)

where Q̄(l,s)
i j are the so-called reduced collision integrals.

Parallel components of the anisotropic transport coeffi-
cients are related to the solutions of the real linear systems
above,

D‖e(ξ) = α0De(1)
e (ξ), (C.21)

λ‖e(ξ) =
5
2
nekBα

1λe(1)
e (ξ), (C.22)

χ‖e(ξ) =
∑

q∈Pξ1

L0q
ee α

qλe(1)
e (ξ), (C.23)

α‖
ei(ξ) =

∑
q∈Pξ1

α
qDe(1)
e (ξ)βqDi

e (C.24)

χ‖
ei(ξ) = −

5
2
α1Di(1)
e (ξ). (C.25)

Like wise, the perpendicular and transverse components are
found using the solutions of the complex linear systems above,
by replacing the left hand side of these equations with µ⊥(ξ) +
iµ�(ξ) for µ = {De, λe, χe, αei, χei} and replacing (1) with (2).

C.2. Isotropic transport systems

The usual collision integral ratios are defined as

A∗i j = Q̄(2,2)
i j /Q̄(1,1)

i j , (C.26)

B∗i j = (5Q̄(1,2)
i j − 4Q̄(1,3)

i j )/Q̄(1,1)
i j , (C.27)

C∗i j = Q̄(1,2)
i j /Q̄(1,1)

i j . (C.28)

In addition, we define binary diffusion coefficients and pure
species viscosities for heavy species as

nDi j =
3
16

√
2πkBTh(mi + m j)

mim j

1

Q̄(1,1)
i j

, i, j ∈ H, (C.29)

ηi =
5

16

√
πkBThmi

Q̄(2,2)
ii

, i ∈ H. (C.30)

First order heavy-particle multicomponent diffusion coeffi-
cients are found as the solution of nh linear systems of the form

Di j = d j
i , (C.31)∑

j∈H

Λ00
i j dk

j = δki − ŷi, k, i ∈ H, (C.32)

where the matrix Λ00
i j is given as

Λ00
i j = Λ00

ji = −
x̂i x̂ j

Di j
, i , j, (C.33)

Λ00
ii = −

∑
j,i

Λ00
i j , (C.34)

where the hat on mole and mass fractions denotes that they
are only over heavy species, ie: x̂i = xi/(1 − xe) for
i ∈ H.

Shear viscosity and heavy-particle thermal conductivity
are found to be the solution of a linear system of the
form

µ =
∑
i∈H

α
µ
i x̂i, µ = {ηh, λh}, (C.35)∑

j∈H

Gµ
i jα

µ
j = x̂i, i ∈ H, (C.36)

where the matrices Gηh
i j and Gλh

i j are given as

Gηh
i j =

x̂i x̂ j

nhDi j

1
mi + m j

(6
5

A∗i j − 2
)
, i , j, (C.37)

Gηh
ii =

∑
j∈H
j,i

x̂i x̂ j

nhDi j

1
mi + m j

(6
5

m j

mi
A∗i j + 2

)
+

x̂2
i

ηi
, (C.38)

and

Gλh
i j =

1
25kB

x̂i x̂ j

nhDi j

mim j

(mi + m j)2

(
16A∗i j + 12B∗i j − 55

)
, i , j,

(C.39)

Gλh
ii =

1
25kB

∑
j∈H
j,i

x̂i x̂ j

nhDi j

mim j

(mi + m j)2

(
16A∗i j − 12

m j

mi
B∗i j + 25

m j

mi

+ 30
mi

m j

)
+

4mi

15kB

x̂2
i

ηi
. (C.40)

Likewise, the heavy thermal diffusion ratios can be computed
as

χhi =
5
2

∑
j∈H

Λ01
i j α

λh
j , i ∈ H, (C.41)

where

Λ01
i j =

1
25kB

x̂i x̂ j

nhDi j

mi

mi + m j

(
12C∗i j − 10

)
, i , j, (C.42)

Λ01
ii = −

1
25kB

∑
j∈H
j,i

x̂i x̂ j

nhDi j

m j

mi + m j

(
12C∗i j − 10

)
. (C.43)
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